Almahdi, S., & Yang, S. Y. (2017). An adaptive portfolio trading system: A risk-return portfolio optimization using recurrent reinforcement learning with expected maximum drawdown. Expert Systems with Applications, 87, 267–279.
Article
Google Scholar
Baek, Y., & Kim, H. Y. (2018). ModAugNet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module. Expert Systems with Applications, 113, 457–480.
Article
Google Scholar
Bao, W., Yue, J., & Rao, Y. (2017). A deep learning framework for financial time series using stacked autoencoders and long-short-term memory. PLoS One, 12(7), e0180944.
Article
Google Scholar
Butaru, F., Chen, Q., Clark, B., Das, S., Lo, A. W., & Siddique, A. (2016). Risk and risk management in the credit card industry. Journal of Banking & Finance, 72, 218–239.
Article
Google Scholar
Cavalcante, R. C., Brasileiro, R. C., Souza, V. L. F., Nobrega, J. P., & Oliveira, A. L. I. (2016). Computational intelligence and financial markets: A survey and future directions. Expert System with Application, 55, 194–211.
Article
Google Scholar
Chai, J. Y., & Li, A. M. (2019). Deep learning in natural language processing: A state-of-the-art survey. In The proceeding of the 2019 international conference on machine learning and cybernetics (pp. 535–540). Japan: Kobe.
Google Scholar
Chai, J. Y., Liu, J. N. K., & Ngai, E. W. T. (2013). Application of decision-making techniques in supplier selection: A systematic review of literature. Expert Systems with Applications, 40(10), 3872–3885.
Article
Google Scholar
Chai, J. Y., & Ngai, E. W. T. (2020). Decision-making techniques in supplier selection: Recent accomplishments and what lies ahead. Expert Systems with Applications, 140, 112903. https://doi.org/10.1016/j.eswa.2019.112903.
Article
Google Scholar
Chakraborty, S. (2019). Deep reinforcement learning in financial markets Retrieved from https://arxiv.org/pdf/1907.04373.pdf. Accessed 04 Apr 2020.
Google Scholar
Chatzis, S. P., Siakoulis, V., Petropoulos, A., Stavroulakis, E., & Vlachogiannakis, E. (2018). Forecasting stock market crisis events using deep and statistical machine learning techniques. Expert Systems with Applications, 112, 353–371.
Article
Google Scholar
Chen, C. T., Chen, A. P., & Huang, S. H. (2018a). Cloning strategies from trading records using agent-based reinforcement learning algorithm. In The proceeding of IEEE international conference on agents (pp. 34–37).
Google Scholar
Chen, H., Xiao, K., Sun, J., & Wu, S. (2017). A double-layer neural network framework for high-frequency forecasting. ACM Transactions on Management Information Systems, 7(4), 11.
Article
Google Scholar
Chen, L., Qiao, Z., Wang, M., Wang, C., Du, R., & Stanley, H. E. (2018b). Which artificial intelligence algorithm better predicts the Chinese stock market? IEEE Access, 6, 48625–48633.
Article
Google Scholar
Chong, E., Han, C., & Park, F. C. (2017). Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies. Expert Systems with Applications, 83, 187–205.
Article
Google Scholar
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12, 2493–2537.
Google Scholar
Deng, Y., Bao, F., Kong, Y., Ren, Z., & Dai, Q. (2017). Deep direct reinforcement learning for financial signal representation and trading. IEEE Transactions on Neural Networks and Learning Systems, 28(3), 653–664.
Article
Google Scholar
Dingli, A., & Fournier, K. S. (2017). Financial time series forecasting—A machine learning approach. International Journal of Machine Learning and Computing, 4, 11–27.
Google Scholar
Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12), 3736–3745.
Article
Google Scholar
Feuerriegel, S., & Prendinger, H. (2016). News-based trading strategies. Decision Support Systems, 90, 65–74.
Article
Google Scholar
Fischer, T., & Krauss, C. (2017). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654–669.
Article
Google Scholar
Galeshchuk, S., & Mukherjee, S. (2017). Deep networks for predicting the direction of change in foreign exchange rates. Intelligent Systems in Accounting, Finance and Maangement, 24(4), 100–110.
Article
Google Scholar
Gunduz, H., Yaslan, Y., & Cataltepe, Z. (2017). Intraday prediction of Borsa Istanbul using convolutional neural networks and feature correlations. Knowledge-Based Systems, 137, 138–148.
Article
Google Scholar
Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27–48.
Article
Google Scholar
Han, J., Jentzen, A., & Weinan, E. (2018). Solving high-dimensional partial differential equations using deep learning. The proceedings of the National Academy of Sciences of the United States of America (PNAS); 8505–10).
Hernandez, J., & Abad, A. G. (2018). Learning from multivariate discrete sequential data using a restricted Boltzmann machine model. In The proceeding of IEEE 1st Colombian conference on applications in computational intelligence (ColCACI) (pp. 1–6).
Google Scholar
Hsu, P. Y., Chou, C., Huang, S. H., & Chen, A. P. (2018). A market making quotation strategy based on dual deep learning agents for option pricing and bid-ask spread estimation. The proceeding of IEEE international conference on agents (pp. 99–104).
Jeong, G., & Kim, H. Y. (2018). Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies and transfer learning. Expert Systems with Applications, 117, 125–138.
Article
Google Scholar
Jiang, X., Pan, S., Jiang, J., & Long, G. (2018). Cross-domain deep learning approach for multiple financial market predictions. The proceeding of international joint conference on neural networks (pp. 1–8).
Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S., Portier, P. E., Guelton, L. H., & Caelen, O. (2018). Sequence classification for credit-card fraud detection. Expert Systems with Applications, 100, 234–245.
Article
Google Scholar
Kim, H. Y., & Won, C. H. (2018). Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models. Expert Systems with Applications, 103, 25–37.
Article
Google Scholar
Krausa, M., & Feuerriegel, S. (2017). Decision support from financial disclosures with deep neural networks and transfer learning Retrieved from https://arxiv.org/pdf/1710.03954.pdf Accessed 04 Apr 2020.
Book
Google Scholar
Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P500. European Journal of Operational Research, 259(2), 689–702.
Article
Google Scholar
Martinez-Miranda, E., McBurney, P., & Howard, M. J. W. (2016). Learning unfair trading: A market manipulation analysis from the reinforcement learning perspective. In The proceeding of 2016 IEEE conference on evolving and adaptive intelligent systems (EAIS) (pp. 103–109).
Chapter
Google Scholar
Matsubara, T., Akita, R., & Uehara, K. (2018). Stock price prediction by deep neural generative model of news articles. IEICE Transactions on Information and Systems, 4, 901–908.
Article
Google Scholar
Minh, D. L., Sadeghi-Niaraki, A., Huy, H. D., Min, K., & Moon, H. (2017). Deep learning approach for short-term stock trends prediction based on two-stream gated recurrent unit network. IEEE Access, 6, 55392–55404.
Article
Google Scholar
Ravi, V., Pradeepkumar, D., & Deb, K. (2017). Financial time series prediction using hybrids of chaos theory, multi-layer perceptron and multi-objective evolutionary algorithms. Swarm and Evolutionary Computation, 36, 136–149.
Article
Google Scholar
Rönnqvist, S., & Sarlin, P. (2017). Bank distress in the news describing events through deep learning. Neurocomputing, 264(15), 57–70.
Article
Google Scholar
Sehgal, N., & Pandey, K. K. (2015). Artificial intelligence methods for oil price forecasting: A review and evaluation. Energy System, 6, 479–506.
Article
Google Scholar
Sevim, C., Oztekin, A., Bali, O., Gumus, S., & Guresen, E. (2014). Developing an early warning system to predict currency crises. European Journal of Operational Research, 237(3), 1095–1104.
Article
Google Scholar
Sezer, O. B., Ozbayoglu, M., & Gogdu, E. (2017). A deep neural-network-based stock trading system based on evolutionary optimized technical analysis parameters. Procedia Computer Science, 114, 473–480.
Article
Google Scholar
Shen, F., Chao, J., & Zhao, J. (2015). Forecasting exchange rate using deep belief networks and conjugate gradient method. Neurocomputing, 167, 243–253.
Article
Google Scholar
Singh, R., & Srivastava, S. (2017). Stock prediction using deep learning. Multimedia Tools Application, 76, 18569–18584.
Article
Google Scholar
Sohangir, S., Wang, D., Pomeranets, A., & Khoshgoftaar, T. M. (2018). Big data: Deep learning for financial sentiment analysis. Journal of Big Data, 5(3), 1–25.
Google Scholar
Song, Q., Liu, A., & Yang, S. Y. (2017). Stock portfolio selection using learning-to-rank algorithms with news sentiment. Neurocomputing, 264, 20–28.
Article
Google Scholar
Tadaaki, H. (2018). Bankruptcy prediction using imaged financial ratios and convolutional neural networks. Expert Systems with Applications, 117, 287–299.
Google Scholar
Wang, C., Han, D., Liu, Q., & Luo, S. (2019). A deep learning approach for credit scoring of peer-to-peer lending using attention mechanism LSTM. IEEE Access, 7, 2161–2167.
Article
Google Scholar
Yan, H., & Ouyang, H. (2017). Financial time series prediction based on deep learning. Wireless Personal Communications, 102, 683–700.
Article
Google Scholar
Zhang, J., & Maringer, D. (2015). Using a genetic algorithm to improve recurrent reinforcement learning for equity trading. Computational Economics, 47, 551–567.
Article
Google Scholar
Zheng, J., Fu, X., & Zhang, G. (2017). Research on exchange rate forecasting based on a deep belief network. Neural Computing and Application, 31, 573–582.
Article
Google Scholar
Zhu, B., Yang, W., Wang, H., & Yuan, Y. (2018). A hybrid deep learning model for consumer credit scoring. In The proceeding of international conference on artificial intelligence and big data (pp. 205–208).
Google Scholar