
Front. Bus. Res. China 2011, 5(3): 512–536 
DOI 10.1007/s11782-011-0143-2 

 
 

Received December 10, 2010 

Yun Wang ( ) 
Center for Non-Traditional Security Studies, Hubei Key Research Institute of Humanities and 
Social Science, Huazhong Unversity of Science & Technology, Wuhan 430074, China 
E-mail: robert401@126.com 
 
Zongcheng Zhang  
Center for Non-Traditional Security Studies, Hubei Key Research Institute of Humanities and 
Social Science, Huazhong University of Science & Technology, Wuhan 430074, China 
E-mail: Zczhang@mail.hust.edu.cn 
 
Renhai Hua 
School of Finance, Nanjing University of Finance & Economics, Nanjing 210037, China 
E-mail: huarenhai@yahoo.com.cn 

RESEARCH ARTICLE 

Yun Wang, Zongcheng Zhang, Renhai Hua 

Investor Behavior and Volatility of Futures 
Market: A Theory and Empirical Study Based 
on the OLG Model 

© Higher Education Press and Springer-Verlag 2011 

Abstract  Investor trading behaviors are always an important issue in 
behavioral finance and market supervision. This study examines the relationship 
between investor behavior and future market volatility. We first introduce a 
two-period OLG model into the futures market, and develop an investor behavior 
model based on future contract price. We then extend the model to two scenarios: 
complete and incomplete information. We provide the equilibrium solution, and 
develop two hypotheses, which are tested with cuprum tick data in Shanghai 
Futures Exchange (SHFE). Empirical results show that the two-period OLG 
model for future market is consistent with the market situation in China. More 
specifically, investors with sufficient information such as institutional investors 
usually adopt the contrarian trading strategy, whereas investors with insufficient 
information, e.g., individual investors, usually adopt the momentum trading 
strategy. These findings reveal that investor behaviors in the Chinese futures 
market are different from those of in the Chinese stock market. 
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1  Introduction and Literature Review 

The momentum effect and contrarian effect of investor behaviors have been well 
demonstrated in stock market. Jegadeesh and Titman (1993) first discovered the 
momentum effect of investors in the stock market: selling low-return stocks in 
the past 3, 6, 9 and 12 months and buying high-return ones in the same period 
among public companies listed in New York Stock Exchange (NYSE) and 
American Stock Exchange (AMEX) from 1965 to 1989. They built a winner 
group and a loser group respectively, and developed 16 trading strategies by 
cross-mating. Their results showed that the strategy of selling the “winners” in 
the last 6 months and buying the “losers” concurrently gained a monthly average 
return of approximately 1%. Almost all the strategies could produce profit, and 
the excess return remained significant even after risk adjustment or accounting 
for all sales charges and expenses. Studies of Chan et al. (1996), Campell (1993) 
and Shiller (1981) all confirmed the existence of momentum effect and 
contrarian effect. A number of Chinese studies also examined the momentum 
effect in stock market, such as Wang and Zhao (2001). It is commonly argued 
that as an emerging market, the Chinese securities market is different from 
western ones on its contrarian strategy. Momentum effect is not significant in the 
Chinese stock market, while the mid- and long-term contrarian effect is more 
pronounced. China’s futures market, however, is greatly different from the stock 
market. It remains unclear whether similar pattern exists in the futures market in 
China. Little research has examined the investor behavior and volatility in future 
markets. This is mainly due to the absence of theoretical models based on futures 
market, which is the key problem to be solved in this study. 

Based on the assumption that investors have representativeness bias and 
conservatism bias, Barberis, Shleifer, and Vishny (1998) (BSV) show that 
investors’ under-reaction to single unexpected return leads to continuation under 
conservatism bias, while their over-reaction to positive returns leads to the 
long-term reversals under representativeness bias. The irrationality of investors 
described in their study can be explained by three Markov processes and the 
investor state transition abided by the Bayesian Law. Daniel, Hirshleifer, and 
Suhramanyam (1998) (DHS) assumed that there were two types of investors in 
securities market, i.e., informed and non-informed investors. Investors’ 
overconfidence in private information and self-attribution bias of public 
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information jointly lead to short-term continuation and a price divergence from 
the fundamental value, while the divergence would fade away in the long term 
and long-term reversal would occur. The irrationality of investors mainly 
originates in the process by which information miners respond to and spread 
information, and the momentum trader could only affect trading volume of 
securities. Harrison and Stein (1999) (HS) assumed that there were two types of 
irrational investors: information miner and momentum trader. The former is 
prone to under-reaction while the latter is prone to over-reaction, which leads to 
continuation and long-term reversal, respectively. Loss-Aversion and House 
Money effect refer to the hypotheses that investors’ risk aversion reduced as the 
prices of securities raise, which leads to further increase of security prices; 
investors’ risk aversion increases as prices decrease, which leads to further 
decrease of security prices. Based on these two hypotheses, Barberis, Huang, and 
Santos (2001) (BHS) developed an equilibrium model which captures the 
short-term continuation and long-term reversal phenomena.  

Nevertheless, the above mentioned investor behavior models (BSV, DHS, HS, 
and BHS) all rely too heavily on theoretical assumptions, neglecting investors’ 
behavior deviation in real life. Under such a circumstance, the overlapping 
generations model (OLG) used in macroeconomics is introduced into the study 
of investor trading behavior for two obvious advantages: First, it provides a 
dynamic research framework under which investors’ trading behavior and asset 
price volatility could be closely related. Second, the two-period OLG model 
describes the simplest dynamic economic situation, and it can be extended to 
three-period or even infinite period situations. Therefore, a growing number of 
researchers have adopted OLG model in their stock market studies. For example, 
Shiller (1981) firstly introduced OLG model to the analysis of stock market 
volatility. De Long et al. (1990a) put forward a simple two-period OLG model 
for securities market, in which the unpredictability of noise traders’ random 
beliefs could affect the price and obtain high expected returns, resulting in 
market risk and leading to price divergence from fundamental value. The author 
thus believed that the model is able to explain a series of market anomalies. 
Although it has been generally assumed in rational speculating analysis that the 
noise traders restrain the market volatility, De Long et al. (1990b) found, based 
on his four-period OLG model, that if noise traders choose positive feedback 
strategy, namely, to buy upon price increasing and to sell upon price decreasing, 
they buy prior to the noise. Moreover, if rational investors adopt positive 
feedback strategy earlier, the volatility in fundamental surface would be 
aggravated. The empirical evidence supported the above assumptions. Campbell 
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and Kyle (1991) and Wang (1993, 1994) also conducted similar studies by 
establishing the finitely-lived agent model.  

Furthermore, Spiegel (1998) found that the stock price volatility could not be 
fully explained by standard dividend discount model, and thus introduced the 
OLG model to explain stock price volatility. His model consists of a random 
supply of risky asset and finitely-lived agents trading in conforming asset 
environment. The analysis shows that there are a total of 2K equilibriums when K 
types of securities are traded, and the highly volatile equilibrium has unique 
characteristics compared with other types of equilibriums. Based on Spiegel’s 
(1998) model, Mashiro (2008) built a more complicated OLG model by 
employing the precondition of heterogeneously informed agents. Mashiro 
analyzed situations in which agents are fully informed, not informed or partly 
informed, and he found that less informed agents tend to employ momentum 
trading while better informed agents apply contrarian strategies. The trading 
volume is inverted-u-shaped due to information precision and is positively 
correlated with absolute price. Finally, precise information does not only increase 
the volatility, but also is associated with stock return in high volatility and is 
strongly associated with volatility equilibrium. The author believed that the 
volatility equilibrium is not likely to deviate once it is produced. Although the 
equilibrium is not the Pareto optimal one, the sub-optimal and steady equilibrium 
is common in real life.  

Researchers in China also conducted some studies on stock market based on 
the OLG model. For example, Kong (2009) built a two-period OLG model and 
introduced traders with subjective belief bias into capital markets to examine 
their impact on asset price volatility by equilibrium analysis. It was found that 
the belief biases and learning ability of noise traders, the market status, market 
dominance and risk aversion degree all have impacts on assets fluctuations but in 
different ways. The consequent empirical analysis partially confirmed this 
conclusion. According to the testing results, stock market volatility in China is 
mainly affected by investor sentiment and market status, and institutional 
investors stabilize the market to some extent.  

This paper intends to build a model and empirical framework of investor 
behavior on futures market. The idea is to improve on the OLG model for stock 
market proposed by De Long (1990b), Spiegel (1998) and Mashiro (2008) from 
such perspectives as the precondition assumption, parameter setup and the 
maximization condition, so as to make the model suitable for the futures market 
in practice. Five related propositions and two hypotheses are proposed based on 
the model. Therefore, the model proposed by this paper is different from above 
mentioned theoretical models.  
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The main contributions of this study are: 1) it takes the lead to introduce the 
OLG model into futures market and builds a two-period investor behavior OLG 
model, which is extended to full and partial information situation to get the 
equilibrium respectively; 2) it conducts empirical studies for the two assumptions 
based on the five propositions of the model with intraday data of futures 
contracts listed in the future market of Chinese mainland. The empirical findings 
partly confirm the deductions of the model that perfect informed futures 
investors represented by institutional investors generally take contrarian 
strategies and less informed investors represented by individual investors behave 
as trend-followers.  

2  A Two-Period OLG Model Based on Futures Market 

Based on the findings of Spiegel (1998) and Mashiro (2008), this paper attempts 
to build the OLG Model based on futures market, and to analyze the relationship 
between investor behavior and futures volatility in the framework.  

Suppose there are K future investors in the market and that a riskless bond 
pays r units per period. In period t, the futures contract comes up with a risk 
premium Pt and { }1 2 3, ,t t t t ntP P P P P= ⋅ ⋅ ⋅ . Designate tδ  is the shock of Pt, 

following a random walk process N(0, δ∑ ). Then,  

 1 .t t tP P δ−= +  (1) 

Therein the risk premium is not described by spot price because the 
proposition whether futures prices are unbiased estimates of spot price is still 
controversial among scholars. Leuthold (1974), Martin and Garcia (1981), 
Hokkio and Rush (1989), and Chen and Zheng (2007), believed that arbitrageurs 
in futures market inevitably require reasonable risk returns, namely, risk 
premium Pt in this paper.  

In microstructure model of futures market, assume the futures contract supply 
as Nt, then }{ 1 2,t t t ktN N N N= ⋅ ⋅ ⋅ . Designate tη  as the shock of supply Nt, 

following a random walk process N(0, η∑ ) , then  

 1 .t t tN N η−= +  (2) 

Therefore, future contract price F is mainly determined by its supply and risk 
premium Pt. We assume that the future contract price-F is controlled by supply Nt 
and risk premium Pt, and Set two state vectors A and B and a matrix A, 
B~ .K K×  A represents the spot change of the futures contracts supply and B 
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represents the spot change of future contracts’ risk premium, then  
 .t t tF AN BP= +   (3) 

The supply is the seller of futures contracts, and the demand is the buyer of the 
futures contracts, thus where supply equals to demand is market clearing point. 
The price at this point is market clearing price. The above tF  refers to the 
market clearing price of futures contract. Set Xt as investors’ demand of futures 
contract, then { }1 2 3, ,t t t t ktX X X X X= ⋅ ⋅ ⋅ , where K represents the Kth futures 

contracts. Here we introduce two critical assumptions as the theoretical basis of 
the model.  

Assumption 1  There exists only one tiny continuum in each unit trading of 
futures investors, that is, each trader acts as a price taker, thus individuals are 
unable to affect the price. 

Assumption 2  Futures investors are more risk-seeking than stock investors. 
The utility U of the final consumption of futures traders in period t +1 follows an 
exponential utility function; the risk aversion coefficient is θ ; the function is 

(2 )WU e θ−= − . 
Under the above two assumptions, we build the Overlapping Generation (OLG) 

model based on futures market. Suppose that futures investors live for two 
periods, born in period t and entering into futures market, and dying at the end of 
period t +1 and exiting. Investors demand for wealth maximization with risk 
preference. They hold two types of assets: one is riskless bond denoted as b and 
the other is futures contract as risky assets denoted as F. Then for an investor i, 
his wealth in period t is as below:   

 ( ) ( ) ( )t t t tW i X i F b i= + . (4) 

Considering the risk premium of futures contract and returns of riskless bonds, 
the investor’s final wealth in period t + 1 is  

 [ ]1 1 1( ) ( ) (1 ) ( )t t t t tW i X i F P r b i+ + += + + + ,  (5) 

where, Ft+1 stands for price of the futures contract in period t +1, Pt+1 denotes risk 
premium of the futures contract in the period t +1, and r denotes riskless interest 
rate. Plugging Equation (4) into Equation (5) simplifies to: 

 [ ]1 1 1( ) ( ) (1 ) ( )t t t t t t tW i X i F F P rF r W i+ + += − + − + + .  (6) 

Substituting Equation (3) into Equation (6) and eliminating Ft+1 and Ft yields  

 [ ]1 1 1 1( ) ( ) (1 ) ( )t t t t t t t tW i X i A B P rF r W iη δ δ+ + + += + + + − + + . (7) 
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The above equation is thus converted into a question for optimization solution. 
As assumed in Assumption 2, the investor seeks to maximize his expected utility 
Ut+1, namely, to maximize the equation 1(2 )

1( ) tW
tE U e θ +−
+ = − . According to the 

deductions of De Long (1990), the maximization of 1tU +  is equal to the 
maximization of the following formula: 
  1 10.5 .t tW Wθ+ +− Σ  (8) 

Expanding the formula (8) gives 

 [ ] { }max (1 ) 0.5 ' ( ) ' ( ) .T T
t t t t t tXt

X P rF r W X A A I B I B Xη δθ− + + − Σ + Σ +  (9) 

Calculate the first-order condition of the above formula. Differentiating the 
above function matrix and simplifying it yields 

 .
( ) ( )

t t
t T T

P rF
X

A A I B I Bη δθ
−

=
⎡ ⎤Σ + + Σ +⎣ ⎦

  (10) 

Substitute Equation (3) into Equation (11): 

 .
( ) ( )

t t t
t T T

P rAN rBP
X

A A I B I Bη δθ
− −

=
⎡ ⎤Σ + + Σ +⎣ ⎦

  (11) 

According to Assumption 1, there exists only one tiny continuum in each unit 
trading of futures investors, which has no effect on price. Therefore, under 
market clearing equilibrium, the equilibrium price shall be the same as the price 
when futures contract supply equals the demand, namely,  

 .t tN X=   (12) 

Calculate the second order condition of Equation (11): 

 ( ) ( ) 0.T TrA A A I B I Bη δθ
Σ + + + Σ + =   (13) 

Futures risk premium is in inverse correlation with interest rate of riskless 
bonds. The higher the interest rate of riskless bonds is, the fewer the futures 
traders there are, and vice versa. We assume the two variables have the 
relationship as below:   

 1 .B I
r

=   (14) 

Substituting Equation (15) into Equation (14) to obtain the expression of state 
vector A: 

 
21 0.T r rA A A

rη δθ
+⎛ ⎞Σ + + Σ =⎜ ⎟

⎝ ⎠
  (15) 
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Accordingly, the above section built a simple two-period overlapping 
generation model based on futures market and produced the first-order and 
second-order conditions. Some relevant propositions will be deducted in the 
following section. According to the above solutions and referring to the 
researches of Spiegel (1998), Matanabe (2008) and Kong (2009), the following 
propositions are obtained.  

Proposition 1  Demand for futures contract is affected by risk premium and 
its price, and it is positively correlated with the risk premium and negatively 
correlated with the price.   

Proof: see the Appendix.  
Proposition 2  Futures contract state vector A is symmetric, with the 

following expression:  

 

1
1 12 2 2

1 2 2 21 1 1 .
2 4

r r rA
rη η η δ ηθ θ

− −− −
⎡ ⎤+⎛ ⎞ ⎛ ⎞= − Σ + Σ − Σ Σ Σ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (16) 

The futures price volatility may exist even in the absence of risk premium. 
Proof: see the Appendix.  
Proposition 3  The price volatility of futures contract is affected by riskless 

interest rate r, risk aversion coefficient θ, state vector A and volatility matrix of 
risk premium δΣ , and follows the following expression: 

 
2

1 11( ) ( ) .T Tr rA A
rη δθ

− −+⎛ ⎞Σ = − − Σ⎜ ⎟
⎝ ⎠

  (17) 

The four variables have complicated nonlinear relation.  
Proof: see the appendix.  

3  Extension of the Model: Considering Complete and Partial 
Information Cases 

In the previous section, heterogeneous information was not taken into 
consideration. Futures investors were assumed to be uninformed, which is rarely 
the case in real life. Now let’s discuss two situations: (1) futures investors are 
fully informed; (2) futures investors are partially informed. First, an information 
variable is added into Equation (3) hereinbefore to build a linear expression of 
price volatility including the two situations. 
 1 1 2 1 2 1 .t t t t tF A N A B P B Cη δ− += + + + +   (18) 

The above equation is actually the extension and conversion of Equation (3) 
by adding different variable coefficients. We need to discuss the steady 
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equilibrium of these coefficients as time is invariant. As for the returns and utility 
of investors, assume Qt+1 as the excess return for each futures contract. Extending 
the above Equation (5), we have the following expression:   

 1 1( ) ( ) (1 ) ( ).t t t tW i X i Q r W i+ += + +   (19) 

 1 1 1 (1 ) .t t t tQ F P r F+ + += + − +   (20) 

Equation (20) represents that the investor i’s returns in the 2nd period equal to 
his excess returns in the 2nd period plus the wealth discount in the 1st period; 
while Equation (21) shows that the investor i’s excess returns of each contract 
equal to the price in the 2nd period plus the risk premium and minus price 
discount in the 1st period, which is consistent with Equation (5), (6) and (7). The 
following sections are the discussion for the two situations.   
 
3.1  Fully-Informed Futures Investors 
 
In this situation, investors may forecast accurately the shock that would occur 

with the information they hold and hence 1 2A A A= = , 1 2
1B B I
r

= =  and 

0c = . Substituting the two conditions into Equation (21) and simplifying it 
yields 

 1 .t t tF AN P
r

= +   (21) 

Substituting Equation (25) in Equation (24) and simplifying it yields 

 1 1 2 1
1 .t t t t tQ A P rF
r

η δ+ + + += + + −  (22) 

This is the expression of investors’ excess returns in fully-informed cases. Let 
the information set of investor i be { }, , , 1, , , ,t i t i t i t t tF P Nδ η −ℜ = . According to 

Assumption II, the utility maximization is 1(2 )
,max tW

t iE e θ +−⎡ ⎤− ℜ⎣ ⎦  which can 

be converted to into the solution for the following maximization.   

 1, , ,max 0.5 1, .t i t i t iE W Var Wt iθ+⎡ ⎤ ⎡ ⎤ℜ − + ℜ⎣ ⎦ ⎣ ⎦  (23) 

No further explanation on the proof process which is similar to above. The 
first-order condition is obtained.  

               1
1 , 1 ,

1, ( )t t i t t iXt i Var Q F E Q F
θ

−
+ +

⎡ ⎤= ⎣ ⎦  
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 1
1

1 ( ) ( ).T T
t tA A B B P rFη δθ

−
+= Σ + Σ −  (24) 

The second-order condition may be met if 1 ,( )t t iVar Q F+  is positive definite 
matrix in fully-informed cases.   

 2
1 0.rA A A
rη δθ

Σ + + Σ =   (25) 

Observing the above equation one may get Proposition 4. 
Proposition 4  In fully-informed cases, the price volatility of futures contract 

is affected by riskless interest rate r, risk aversion coefficient θ, state vector A 
and volatility matrix of risk premium δΣ , and it is inversely associated with the 
volatility of risk premium. Its vector matrix follows the following equation: 

 1 1 1
2

1 .r A A A
rη δθ

− − −Σ = − − Σ   (26) 

Proof: see the appendix.  
Comparing the above equation and Equation (20) one can find that the switch 

from none information to full information can be realized by changing the state 
vector A matrix.  
 
3.2  Partially-Informed Futures Investors 
 
This is the most complicated case in the paper. As futures traders receive 
different information in different periods, futures supply coefficient A1 and 
supply shock coefficient A2 are different respectively, so are risk premium 

coefficients B1 and B2. Substituting the two conditions 1 2A A≠ , 1 2
1B I B
r

= ≠  

and 0c =  into Equation (22) simplifies to: 

 ( )1
1 1 2 1 2 2

1 .t t t tFt A N P B B A
r

δ η−
− += + + +  (27) 

The investor’s excess return under the information set ,t iℜ  in period t+1 is  

 
1 1

1 1 2 2 1 2 2 2 1
1

1 1 1 2 2

( ) ( )

( ) .
t t t t

t t t t

Q A A I B B A A

B I A F B P rF

δ η η

δ δ

− −
+ + +

−
+ +

= − + +

+ + − + + −
 

(28)
 

The maximization, similar to that in fully-informed cases, needs to be solved 
from Equation (28). Refer to Appendix for detailed calculation. The difference is 
the first-order condition obtained:  
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1
1 , 1 ,

1 1
2 2 1 1 2 2 1 1 2 2

1 1 1
2 2 1 2 2 1 2 2

1
1 1 2 2 1 , 1

1, ( )

1 ( ( ) ( )

) ( ) ( )

( ) .

t t i t t i

T T
i

T
t t

t t i t t

Xt i Var Q F E Q F

A A B I A A B B I A A B

B B A A I B B A

B I A A B E P rF

η

δ

θ

θ
δ η

δ

−
+ +

− −

− − −
+

−
+ +

⎡ ⎤= ⎣ ⎦

= Σ + + − Σ + −

+ Σ − +

⎡ ⎤+ + − ℜ + −⎣ ⎦

 

(29)

 

There are so many parameters that it needs to be discussed case by case, which 
is out of the scope of this paper. The second order condition is given herein and 
can be simplified to 
 

1 1.
t t

rAδ η+
Σ = Σ +  (30) 

Proposition 5 is obtained according to the above equation.  
Proposition 5  In partial-informed cases, the futures risk premium volatility 

1tδ +
Σ  is affected by futures price volatility

tη
Σ , riskless interest rate r and the 

last-period supply state vector A1, and is positively correlated with the three 
factors. 

Proof: see the appendix. 

4  Research Design and Data Process 

The Two-period OLG Model has been built in the previous sections and extended 
to the case of full and partial information, drawing five propositions. This section 
describes our empirical studies and discuss implications of the mathematical 
model constructed.  

Propositions 1, 2 and 3, as we can see, originate from the benchmark model 
with no information, while Propositions 4 and 5 originate from extension of 
benchmark model, with full information and no information, respectively. 
Therefore, Propositions 4 and 5 are developed on the basis of Propositions 1, 2 
and 3. Propositions 4 and 5 are most valuable for analyzing the momentum 
trading and contrarian trading behavior of futures investors in this paper. Hence 
the empirical section is developed around these two propositions. Due to the lack 
of direct evidence from prior literature, the empirical section, instead of applying 
structural estimation, makes some predictions from the model, deduces empirical 
hypotheses and makes some empirical verification.   

To be specific, such four variables as riskless interest rate r, risk aversion 
coefficient θ, state vector A and volatility matrix of risk premium δΣ are involved 
in Proposition 4; it shall be noted particularly that in fully-informed cases, the 
price volatility of futures contract is inversely correlated with the volatility of 
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risk premium. The higher the volatility of the price, the lower the volatility of the 
risk premium. Fully-informed investors are more likely to seek for stable risk 
returns and to trade such contracts; the lower the volatility of the price, the higher 
the volatility of the risk premium. Fully-informed investors are more likely to 
seek volatile risk returns and less likely to trade such contracts. Therefore, 
investors apply contrarian trading strategies, buying stock with low return in the 
past and selling stock with high return in the past, following “the lowering” 
instead of “the rising.” Hence, this paper attempts to build a verifiable hypothesis 
as below:  

H1  Fully-informed futures investors can make accurate prediction of future 
shocks with information in hand and employ contrarian trading strategy. 

 
Such four variables as futures price volatility matrix ,

tη
Σ  futures risk premium 

volatility matrix 
1
,

tδ +
Σ  riskless interest rate r and the last-period supply state 

vector A1 are involved in proposition 5; it shall be particularly noted that in 
partially-informed cases, the price volatility of futures contract is positively 
correlated with risk premium volatility. That is, the higher the price volatility, the 
higher the risk premium volatility upon the expected returns is requested by 
investors. Investors are less likely to trade such contracts; the lower the price 
volatility, the lower the risk premium volatility upon the expected returns is 
requested by investors. Investors are more likely to trade such contracts. 
Therefore investors apply trend (momentum) trading strategies to buy stock with 
high return in the past and sell stock with low return in the past, following “the 
rising” instead of “the lowering.” Hence, this paper develops another verifiable 
hypothesis as below: 

H2  Partial-informed futures investors can only make predictions of partial 
shocks in future with information in hand and apply continuation trading 
strategy. 

 
Upon development of the two hypotheses, proper proxy variables shall be 

selected to serve as indexes in empirical analysis. First of all, how to distinguish 
full information and partial information that investors are to consider. This is not 
an easy task. Prior literature (such as Wang et al., 2001; Kong, 2009) shows that 
generally institutional investors are able to get more information than individual 
investors. Hence in the empirical section we classify investors into two 
categories: one is institutional investors (with sufficient information or full 
information) and the other is individual investors (with no information or partial 
information). Hence, in the empirical section, institutional investors and 
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individual investor should be distinguished from each other. Then, the trading 
strategies and returns of the two trading groups in a given period should be 
analyzed to identify the relevant trading mode. 

Data used in this paper were the copper futures tick data in SHFE, collected 
within a period of 484 trading days from 1 January 2007 to 31 December 2008, 
with 1 033 980 tick data in total. The tick data included trading direction and 
provided by WSTOCK. Tick data were used because investor categories such as 
institutional investors and individual investors could be distinguished by 
analyzing trading volume. Copper futures contract was used because it is 
relatively mature and active kind of futures in Chinese futures market, which is 
commonly used in current empirical studies on futures (Hua et al, 2002). 
Therefore，it is reasonable to verify investors’ trading behavior in futures market 
by copper futures contract.  

This research used the SAS 9.1.3 program to perform data analysis, with the 
following issues considered:  

(1) In order to avoid the issues of continuous contract generation, this research 
directly chose SHFE copper continuous contracts as the object, rather than using 
contract data approaching delivery month to generate continuous contracts (Hua 
et al, 2002), as is frequently adopted in previous literature, or using futures 
contract exponential, which suffers from information missing during data 
processing and switch problem on expiration date of contracts. These problems 
can be avoided by adopting SHFE cuprum continuous trading contract.  

(2) Since open-call auction is adopted in SHFE, with opening price generated 
in five minutes before opening and settlement price generated automatically by 
SHFE for open contracts upon market close. The precision of empirical analysis 
was guaranteed by eliminating data before 9:00 and after 15:00 from all the tick 
data.  

(3) Copper futures’ trading has been active ever since. The program used in 
this study generated a spreadsheet recording 1 033 980 trading ticks by data 
merging, in which nine variables were included: trading time (Time), live trading 
price (Price), live trading volume (Volume), number of open interests (Open_int), 
selling price 1 (SP1), buying price 1 (BP1), Selling volume 1 (SV1), buying 
volume 1 (BV1), and trading direction (isBuy), 1 refers to buying-in while -1 
refers to selling-out). The empirical analysis will focus on Price, volume and 
isBuy, of which the descriptive statistics are in Table 1.  

(4) Classification of investors. Chart of trading volume frequency statistics 
was generated in Fig. 1 according to the frequency of each tick trading volume, 
where the black column refers to the frequency of each trading value and the red 
broken line refers to cumulative percentage of the frequency. The frequency of 
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Table 1  Descriptive Statistics of Three Major Variables 

Index/Variable Price Volume isBuy 
Average Value 57 527.037 4 50.741 7 0.501 4 
Median 62 000.000 0 22.000 0 1.000 0 
Max. Value 75 810.000 0 87 596.000 0 1.000 0 
Min. Value 22 210.000 0 2.000 0 0.000 0 
Standard Deviation 12 693.449 0 133.060 0 0.500 0 
Skewness −1.626 0 322.467 5 −0.005 5 
Kurtosis 1.547 1 196 070.795 0 −1.999 9 
Normal Distribution D Value 0.200 8 0.357 1 0.342 1 
P Value 0.000 1 0.000 1 0.000 1 

 
trading volume is U-shape distributed with high frequency of both small and big 
orders at the two ends and low frequency in the middle. Hence two threshold 
values are set as 33.3 percent and 66.7 percent as per the cumulative percentage 
of each trading value frequency. Thus tick data of investors can be classified into 
three groups by trading volume: the first group is the trading data with the 
cumulative percentage of frequency ranging from 0 to 33.3 percent, the second 
group is those with the percentage ranging from 33.3 percent to 66.7 percent and 
the third group is those with the percentage ranging from 66.7 percent to 100 
percent. The chart shows that: 1) each tick trading volume in the first group is 
less than 10 units, as small order trading; so the traders tend to be less-informed 
individual investors; 2) each tick trading volume in the third group is more than 
40 units, as big order trading; so the traders tend to be well-informed institutional 
investors; 3) the trading volume in the second group is between 10 and 40 units. 
According to Hypothesis 1 and 2, this study focused on the two extreme cases in 
the first group and in the third group.  

 

 
 

Fig. 1  Frequency Statistics of Each Tick Trading Volume 
 

 (5) Building portfolios with abnormal returns. The time window set in this 
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paper were 5 days, 10 days, 15 days, 20 days, 25 days, 30 days, 60 days and 90 
days, respectively. Firstly, we merged the tick data into intraday data by SAS, 
yielding 483 data of daily return. The formula for daily return is 1ln( / )t tP P− ×  
100% . The daily return herein refers to the return based on closing price on each 
trading day, based on which cumulative return for each time window is 
calculated. Secondly, we merged intraday data in the above-mentioned Group 1 
and Group 3, yielding trading amount of investors in the two groups respectively. 
The formula for trading amount is Prw ice Volume isBuy= × × ; we then built the 
net buy-in portfolio and the net sell-out portfolio according to trading amount. 
Then we examined the change of excess return of buy-in portfolio and of sell-out 
portfolio during the time windows: if the trading direction is from positive to 
negative and the return is from high to low for buy-in portfolio and sell-out 
portfolio respectively, the investors in the time window are likely to adopt 
momentum trading strategy; if the trading direction is from positive to negative 
and the return is from low to high for buy-in portfolio and sell-out portfolio 
respectively, the investors in the time window are likely to adopt contrarian 
trading strategies. Lastly, we examined the mean and significance of return series 
during the time windows.  

5  Result 

At first, we built 5-day, 10-day, 15-day, 20-day, 25-day, 30-day, 60-day and 
90-day portfolios of two investor groups respectively and considered to 
distinguish the net buy-in portfolio and the net sell-out portfolio. The 
correlogram and Q statistic test show that the net buy-in and net sell-out 
portfolios of Group 1 and Group 3, totaling 28 kinds of portfolios, had no serial 
correlation. Hence we do not conduct any serial correlation calibration. Adding 
up and merging as per window, empirical results of investment amount and 
return were obtained by T test, as shown in Tables 1 and 2. 

The above two tables report the statistical characteristics of investment volume 
and return for the two kinds of investors in Group 1 and Group 3, wherein return 
is the mean of the series, and the null hypothesis of T test is zero return. The two 
situations of “net buy-in” and “net sell-out” were distinguished. The tables show 
that in the net buy-in portfolio of Group 1, the return showed an increasing 
tendency while in the net sell-out portfolio it showed a decreasing tendency, 
indicating that this group of traders adopts the momentum trading strategy. In the 
portfolios of Group 3, the return showed a decreasing tendency for net buy-in 
portfolios and an increasing tendency in net sell-out portfolios, indicating that 
this group of traders adopts the contrarian trading strategy. Nevertheless the 
tendency was not obvious in 5-d and 10-d portfolios, due to short-term market 
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volatility. In 60-d portfolios, however, this tendency was obvious, which is 
illustrated in Fig. 2. 

 

 
 

Fig. 2  60-d Momentum Effect and Contrarian Effect of Two Investor Groups 
 

Fig. 2 shows that investors of Group 1 adopted net buy-in strategy in the rising 
channel of return and net sell-out strategy in the descending channel of return, 
which is a typical momentum trading mode; and that investors of Group 3 
adopted net buy-in strategy in the descending channel of return and net sell-out 
strategy in the rising channel of return, which is a typical contrarian trading mode. 
Thus both H1 and H2 were supported.  

After the momentum and contrarian trading modes of futures investors were 
proved by constructing “net buy-in” and “net sell-out” portfolios, we conduct 
additional tests to check the robustness of the results. Without distinguishing 
between “net buy-in” and “net sell-out”, we built 5-day, 10-day, 15-day, 20-day, 
25-day, 30-day, 60-day and 90-day portfolios for the two investor groups, 16 
types of portfolios in total and sum up within each portfolio. The correlogram 
and Q statistic test show that the 5d and 10d portfolios of Group 1 are 
second-order serial correlated, that the 5d portfolios of Group 3 are first-order 
serial correlated, that the 10d portfolios are second-order serial correlated ; and 
that the other portfolios are not serial correlated. For portfolios which are 
first-order serial correlated, AR (1) model was adopted to calibrate the standard 
error series. AR (2) model was adopted to calibrate the standard error series for 
those portfolios which are second-order serial correlated. The empirical results of 
investment amount and return of the two investor groups were presented in Table 
4 after t value adjustment. 
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The return variance curves for 90d portfolios are in Fig. 3. 
 

 
 

Fig. 3  Momentum and Contrarian Effects of Investor Groups without Distinguishing Net 
Buy-In and Net Sell-Out 

 
The above figures show that, during the process of continuing decrease of 

return, the investors of Group 1 adopted trading strategies of buy-sell-buy- 
sell-sell, which is the typical momentum mode; while the investors of Group 3 
were buying continuously, which is the typical contrarian trading mode. Thus H1 
and 2 were supported. The results of robustness check also confirmed the main 
findings. The empirical section of this paper showed that H1 and 2 are supported, 
namely, that partial-informed investors usually adopt momentum trading strategy 
while well-informed investors usually adopt contrarian trading mode; moreover, 
the longer the cycle is, the more significant momentum and contrarian effects are. 
And this conclusion is obviously different from prior literature on the investor 
behavior which argues that there is no momentum effect in Chinese stock market. 

6  Conclusion 

To sum up, based on a view of behavioral finance research that investors have 
momentum trading strategy and contrarian trading strategy, this study introduced 
a two-period OLG model into the futures market and developed an investor 
behavior model based on futures market. Moreover, the model was also extended 
to two situations with complete and incomplete information. We then examined 
futures market’s volatility by equilibrium analysis and solved first-order and 
second-order conditions. The results indicate that the price volatility of futures 
contract is affected by riskless interest rate of bonds, investors’ risk aversion 
coefficient, contract supply state and risk premium volatility, which is summed 
up by the five propositions herein.  

After construction of the mathematic model, this paper further deduced two 
hypotheses on the basis of the five propositions. Using cuprum tick data in SHFE, 
we test the two hypotheses. Results partially supported the theoretical model and 
found that in the Chinese futures market, well-informed investors (e.g., 
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institutional investors) usually adopt contrarian trading strategy, whereas 
partial-informed investors (e.g., individual investors) usually adopt momentum 
trading strategy. Hence there are obvious differences between Chinese futures 
market and stock market. More in-depth research on trading modes of 
heterogeneous investors in the Chinese futures market is likely to assist investors’ 
decision-making and related market supervision. 
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Appendix 

Proposition 1  Demand of futures contract is affected by risk premium and 
its price, and it is positively correlated with the risk premium and negatively 
correlated with the price.  

Proof: from Equation (11),  

 1t

t

X
rB

P
∂

= −
∂

,   t

t

X
r

F
∂

= −
∂

, known 0,r >  
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hence tX  is positively correlated with tP  and negatively correlated with .tF . 
This completes the proof.   

Proposition 2  Futures contract state vector A is symmetric and can be 
expressed as: 

 

1
1 12 2 2

1 2 2 21 1 1 .
2 4

r r rA
rη η η δ ηθ θ

− −− −
⎡ ⎤+⎛ ⎞ ⎛ ⎞= − Σ + Σ − Σ Σ Σ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
  (A1) 

The futures price volatility can exist even in the absence of risk premium.  
Proof: starting from Equation (16), since ηΣ and δΣ  is symmetric, 

variance-covariance matrix, the first item and the third item in Equation (16) are 
symmetric. In addition, r  and θ  are scalars, so A is surely a symmetric vector.   
Therefore, A can be substituted by TA , the transpose of A. With substitution 

method, given 
1 1
2 2Y Aη η= Σ Σ  , multiply 

1
2
ηΣ  on the left and the right side of 

Equation (16) respectively: 

 
1 12

2 2 21 0.r rY Y
r η δ ηθ
+⎛ ⎞+ + Σ Σ Σ =⎜ ⎟

⎝ ⎠
  (A2) 

Equation (18) is a quadratic matrix. Plus 
21

4
r I
θ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 on both sides of the 

equation to eliminate Y and simplify, attaining: 

 
1 12 2 2
2 210.5 0.25 .r r rY I I

r η δ ηθ θ
+⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = − Σ Σ Σ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (A3) 

Extract the root, then: 

 

1
1 12 2 2
2 21 1 1 .

2 4
r r rY I I

r η δ ηθ θ

⎛ ⎞+⎛ ⎞ ⎛ ⎞= − + − Σ Σ Σ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 (A4) 

Taking 
1 1
2 2Y Aη η= Σ Σ  in, Equation (16) is obtained. 

For Equation (16), it may be found that δΣ  doesn’t always multiply ηΣ  on 
the right or left, and hence the futures price volatility can exist even in the 
absence of risk premium. This completes the proof. 

Proposition 3  The price volatility of futures contract is affected by riskless 
interest rate r, risk aversion coefficient θ, state vector A and volatility matrix of 
risk premium δΣ , and follows the following equation: 
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2

1 11( ) ( ) .T Tr rA A
rη δθ

− −+⎛ ⎞Σ = − − Σ⎜ ⎟
⎝ ⎠

 (A5) 

The four variables have rather complicated nonlinear relation.  
Proof: It is already known in the previous proofs that the volatility level of 

futures contract price is determined by the price covariance matrix ηΣ . Then 
applying reasonable transformation on Equation (16) leads to: 

 
2

1 11( ) ( ) .T Tr rA A
rη δθ

− −+⎛ ⎞Σ = − − Σ⎜ ⎟
⎝ ⎠

 (A6) 

It can be found from the above equation that ηΣ is jointly determined by the 

four variables of r, θ , TA and δΣ . Differentiating the four variables leads to 
the following:  

1
2 ( )Tr Aη

θ θ
−∂Σ

=
∂

, 

1 2 11 ( ) (2 2 ) ( )T TA r r A
r
η

δθ
− − −∂Σ

= − − − Σ
∂

, 

 
2 2

1 21 1( ) , ( ) .T T
T

r r rA A
r rA

η η
δ

δ θ
− −

⎛ ⎞∂Σ ∂Σ+ +⎛ ⎞ ⎛ ⎞= − = + Σ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂Σ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
  

Therefore, level of price volatility is in complicated nonlinear relation with the 
four variables mentioned above. This completes the proof.  

Proposition 4  In fully-informed cases, the price volatility of furtures 
contract is affected by riskless interest rate r, risk aversion coefficient θ, state 
vector A and volatility matrix of risk premium δΣ . Its vector matrix follows the 
following equation: 

 1 1 1
2

1 .r A A A
rη δθ

− − −Σ = − − Σ   (A7) 

Proof: From Equation (29),  

 2
1 0.rA A A
rη δθ

Σ + + Σ =  

Transpose and multiply A on the right and the left side,  

 1 1 1
2

1 .r A A A
rη δθ

− − −Σ = − − Σ  
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Therefore, the level of futures contract price volatility is determined by the 
four above-mentioned variables. This completes the proof.  

Proposition 5  In partial-informed cases, the futures risk premium volatility 

1tδ +
Σ  is affected by futures price volatility ,

tη
Σ  riskless interest rate r and the 

last-period supply coefficient A1, and is positively correlated with the three. 
Proof: From Equation (34) one may know that 

1tδ +
Σ  depends on 

tη
Σ , r  and 

1A , and 

                     1 1

1
1 0, 0.t t

t

r
A

δ δ

η

+ +
∂Σ ∂Σ

= > = >
∂Σ ∂

  

 Therefore, the volatility of futures risk premium 
1tδ +

Σ is positively correlated 
with 

tη
Σ and A1. This completes the proof. 


